Performance increase in the distribution grid

Our Low Voltage Regulation System LVRSys™ as a useful tool for the future

Grid congestion causes rejection of PV connection requests by grid operators

Due to economic unreasonableness, grid operators are rejecting applications to connect PV systems in the low-voltage grid more often. The responsible grid planners are guided by the connection guideline VDE-AR-N 4105, in which decentralized generation facilities may only raise the voltage level in the low-voltage grid by 3% compared to the previous situation. Potential photovoltaic plants are thus not realized, despite existing technical transmission capacity.

The current-carrying capacity of the grids is rarely approached by complying with the directive.

The following voltage drop analysis demonstrates the limitations of integrating photovoltaic systems into the low-voltage grid using traditional calculation methods and outlines a way out using the Low-Voltage Regulation System LVRSys™.

Voltage increase due to grid integration of PV systems

According to the fundamentals of electrical science, the voltage drop of power along a line can be calculated using the following formula:

Figure 1 illustrates the normalized voltage drop (3%) from the line impedance (line length and cross-section) depending on the power. Aluminum cables with cross sections of 4 x 150 mm² and 4 x 240 mm² are frequently used in the European low-voltage grid. These cables may be loaded up to a length of 120 m or 140 m at 100 % (250 kW / 186 kW) and at a length of 500 m at the end of the cable only with 42 kW or 65 kW, respectively, in order to comply with the 3 % criterion. After 500 m, the load of the cables is only approx. 25 %. Therefore, after a short cable length, the limiting parameter for the connection of distributed generation plants is no longer the current carrying capacity, but the voltage maintenance.

Figure 1: Permissible active power according to cross-section and cable length for a voltage drop of 3%
Figure 2: Permissible active power according to cross-section and cable length for a voltage drop of 9%

Using a LVRSys™ low-voltage control system with an exemplary control range of ±6%, the permissible voltage drop that must be maintained increases from 3% to 9% (Figure 2). The 4 x 150 mm² or 4 x 240 mm² cables can be 100% loaded by using the controller up to a length of 350 m or 390 m, respectively, without violating the 3% criterion. The grid integration of decentralized generation facilities can therefore be increased up to the technical utilization limit (current carrying capacity) of the cables. For longer cable sections, the grid integration can be increased 4-fold by using controllers.

This example illustrates that the LVRSys™ is a building block for low-voltage grids to advance the energy transition in a cost-effective manner.

Do you have questions about our LVRSysTM?

Contact us!


Contact

You might also be interested in

All „Supra“ with your grid?

Today's devices and equipment such as switched-mode power supplies, frequency converters, controlled drives, charging devices for e-mobiles or LED lighting work internally with high clock frequencies in order to regulate power efficiently. These can lead to line-borne as well as field-borne (coupled) interference in the power grid. In this technical report, we explain how you can detect these sources of interference in the grid using suitable measurement technology.

Read more

Power Quality Analysis: Tips and Tricks II

Useful tips & tricks for handling Power Quality measuring devices and typical user errors - now in our two-part article! This article provides further insights and practical tips and application examples for power quality analysis.

Read more

Power Quality Analysis: Tips and Tricks I

Useful tips & tricks for handling Power Quality measuring devices and typical user errors - now in our two-part article! This article explains tips and tricks for performing power quality measurements. It explains which connection errors can be made and which preliminary considerations should be made before using a measuring device.

Read more

Four ways to measure current

The following technical report examines various methods for measuring current. It discusses how currents are measured using power analyzers and current clamps. The respective advantages and disadvantages of different technologies such as shunts, normal current clamps, hall effect sensors, etc. ar also evaluated.

Read more

Contact request:



Your data is being processed

a-eberle kontakt newsletter ×

Our seminars &
webinars

► Register here!

x