+++ Action d’échange de PQ-Box : seulement du 01.09. – 31.12.2024 +++ Réduction de prix attractive sur votre commande de PQ-Box +++ Cliquez ici pour plus d’infos ! +++

+++ Action d’échange de PQ-Box : seulement du 01.09. – 31.12.2024 +++ Réduction de prix attractive sur votre commande de PQ-Box +++ Cliquez ici pour plus d’infos ! +++

+++ Action d’échange de PQ-Box : seulement du 01.09. – 31.12.2024 +++ Réduction de prix attractive sur votre commande de PQ-Box +++ Cliquez ici pour plus d’infos ! +++

Tout « Supra » avec votre réseau ?

Rétroaction du réseau dans la gamme de fréquences comprise entre 2kHz et 150kHz

Les appareils et équipements actuels, tels que les alimentations à découpage, les convertisseurs de fréquence, les entraînements contrôlés, les dispositifs de recharge pour les véhicules électriques ou l’éclairage LED, fonctionnent en interne avec des fréquences d’horloge élevées afin de réguler efficacement l’énergie. Ces fréquences peuvent entraîner des interférences transmises par les lignes ou par les champs (couplées) dans le réseau électrique. Dans ce rapport technique, nous expliquons comment vous pouvez détecter ces sources d’interférence dans le réseau à l’aide d’une technologie de mesure appropriée.

L’évolution des technologies énergétiques

Les raisons de l’efficacité énergétique et des économies de coûts

Afin d’utiliser l’énergie de manière plus efficace, nous contrôlons aujourd’hui de nombreuses choses par le biais de l’électronique de puissance. Par exemple, un moteur asynchrone est souvent remplacé par un entraînement commandé par un convertisseur de fréquence, ou un appareil est équipé d’une alimentation à découpage au lieu d’un transformateur.

En règle générale, la nouvelle technologie des appareils, contrairement à l’ancienne, ne tire plus un courant sinusoïdal du réseau. Les appareils de mesure de la qualité de l’énergie décomposent ce courant dans le spectre de toutes les fréquences. Dans la mesure de la qualité de l’énergie, nous divisons maintenant les perturbations du réseau en harmoniques, interharmoniques et, plus récemment, en superharmoniques.

Nous définissons les harmoniques comme des multiples de la fondamentale (exemple 250Hz = 5ème harmonique d’une fondamentale de 50Hz). Si les fréquences se situent entre deux multiples entiers de la fondamentale, nous les appelons intermédiaires ou interharmoniques. Dans la technologie de mesure de la qualité de l’énergie ainsi que dans les normes, tous les interharmoniques d’une gamme sont généralement combinés en une seule valeur (exemple : toutes les fréquences entre >350Hz et <400Hz sont incluses dans le 7ème interharmonique).

Les hautes fréquences supérieures à 2,5 kHz et allant jusqu’à 150 kHz sont souvent appelées supraharmoniques. Oh oui, il y a aussi des sous-harmoniques. Il s’agit de fréquences inférieures à la fondamentale, qui peuvent souvent entraîner des perturbations.

L’image montre un spectre de fréquence de la tension entre le courant continu et 20 kHz dans un réseau public. On peut y voir des harmoniques et des supra-harmoniques qui, dans ce cas, ont été générées par un entraînement commandé par un convertisseur de fréquence. Les niveaux les plus élevés se situent à 10 kHz avec environ 1,8 V.

Fréquences de cycle typiques des systèmes et dispositifs avec lesquels nous devons compter dans nos réseaux aujourd’hui :

  • Variateur de fréquence : 4kHz à 20kHz
  • Convertisseur solaire (400V) : 16kHz à 22kHz
  • Système WK (réseau MT) : 2kHz à 6kHz
  • Mobile électronique : 10kHz à 80kHz
  • Filtres secteur actifs : 8kHz à 20kHz
  • Systèmes UPS : 15kHz à 25kHz
  • Luminaires EVG : 20 kHz à 200 kHz
  • Alimentations à découpage : 30kHz à 300kHz

D’où viennent ces fréquences de commutation élevées dans nos charges électriques ?

Exemple : Un pont redresseur à l’entrée d’une machine à commande numérique redresse les tensions triphasées en une tension continue. Cette tension continue est décomposée en impulsions avec différents temps d’impulsion-pause à une certaine fréquence de cycle pour produire un courant sinusoïdal dans la charge électrique. C’est ce qu’on appelle la « modulation de largeur d’impulsion sinusoïdale ». La vitesse du moteur peut être contrôlée de cette manière. Les charges de très forte puissance, comme une éolienne, ont généralement une faible fréquence de commutation, tandis que les systèmes de faible puissance fonctionnent avec des fréquences de cycle beaucoup plus élevées

L’image montre un diagramme de la structure d’un entraînement commandé par convertisseur de fréquence, qui se compose d’un redresseur, d’une liaison CC et d’un onduleur.

Ces fréquences de cycle et leurs bandes latérales peuvent être détectées dans le courant du réseau ainsi que dans la tension du réseau, qui est cartographiée via l’impédance du réseau.

Dans l’exemple (Fig. 5), nous voyons le spectre de fréquence de la tension d’une charge avec une fréquence de cycle de 4,5 kHz à 2,5 V d’une installation industrielle. Un variateur fonctionne avec cette fréquence de commutation. Cependant, ce n’est pas la seule fréquence représentée dans le réseau énergétique. Il existe d’autres fréquences que nous recevons en tant que réaction de réseau de ce système. La formule permet de calculer tous les multiples de la fréquence de commutation et ses bandes latérales.

f_{μ} = n *f_{T} ± 2_{n} * f_{1}

n = 1, 2, 3…
fμ = fréquence du cycle de l’onduleur
f1 = fréquence fondamentale du réseau (50Hz)

Dans notre exemple, ce système imprime non seulement le 4,5kHz mais aussi tous les multiples de celui-ci. Ici de 9kHz, 13.5kHz ; 18kHz… dans le réseau, ainsi que leurs bandes latérales de +/-100Hz ; +/200 etc.

Quels sont les problèmes auxquels nous sommes confrontés ?

Les problèmes suivants peuvent désormais survenir dans le réseau en raison des supra-harmoniques :

1. Dysfonctionnement des appareils

De plus en plus de charges sont commandées par de très petits signaux de commande à haute fréquence. Or, il peut arriver qu’un signal d’interférence à haute fréquence provenant d’une charge imprime exactement ces fréquences dans le réseau avec lequel un autre appareil est contrôlé. En voici un exemple : Dans un hôtel qui avait équipé toutes les chambres de lampes à variateur tactile, une entreprise industrielle qui produisait à proximité était en mesure d’allumer et d’éteindre ces lampes de manière indépendante. Comme cela se produisait également la nuit, cela était très gênant pour les clients qui passaient la nuit dans l’hôtel. Dans un autre cas, les effets de rétroaction d’un onduleur solaire peuvent entraîner la défaillance d’une ligne de traite automatique pour les vaches d’une ferme. Dans les deux cas, il n’y a pas de dégâts, mais certaines charges de ce réseau ne fonctionnent pas sans faille.

2. Bruits de sonnerie perturbateurs

Un autre problème qui se pose de plus en plus fréquemment dans nos réseaux est celui des bourdonnements ou sonneries dérangeants provenant des charges. Les fréquences du cycle se situent souvent dans la plage d’audition de l’oreille humaine. En règle générale, l’homme peut percevoir des sons jusqu’à un maximum de 16 kHz, mais la sensibilité varie considérablement d’une personne à l’autre. Dans une installation industrielle, nous sommes déjà habitués au fait que dès qu’une machine à commande numérique fonctionne, par exemple, un bruit de sonnerie provenant de l’installation peut être perçu. Cependant, si le voisin d’en face entend une sonnerie provenant d’un transformateur ou d’un appareil d’éclairage, éventuellement même la nuit, cela peut être perçu comme très dérangeant et il faut chercher un remède à cette perturbation.

3. Défaillance ou vieillissement de l’équipement

La charge des fréquences de cycle des autres charges dans le voisinage est également préjudiciable. Les courants de fréquence plus élevée sont fortement atténués par des inductances telles que les transformateurs et ne veulent donc pas s’écouler vers le transformateur du réseau local. Ces fréquences de commutation recherchent plutôt d’autres charges dans le voisinage qui ont une faible impédance pour ces hautes fréquences. En raison de la consommation de courant supplémentaire, ces charges sont davantage chauffées, puisque les pertes augmentent comme le carré du courant P = I²xR. Les condensateurs peuvent être surchargés ou du moins vieillir plus rapidement, car ils ont une impédance très faible pour les hautes fréquences.

XC=\frac{1}{ω*C}
ω=2*π*f

Une consommation de courant accrue signifie toujours une charge thermique plus élevée sur la charge, ce qui entraîne une réduction de la durée de vie. Pourquoi ma lampe LED ne dure-t-elle pas aussi longtemps que ce qui est indiqué sur l’emballage ? Les supra-harmoniques peuvent jouer un rôle.

La propagation du bruit dans le réseau est donc fortement influencée par tous les appareils connectés et allumés à proximité et moins par les impédances de ligne.

Une réaction s’est produite dans la nomenclature de la qualité de la tension.

Pendant longtemps, la gamme de fréquences de 2,5 kHz à 150 kHz a été une zone sans norme. La norme CEM IEC61000-2-2 (Conditions d’environnement – Niveaux de compatibilité pour les perturbations conduites à basse fréquence dans les réseaux publics à basse tension) a déjà réagi et, depuis 2018, a étendu la plage des valeurs limites de 2,5 kHz à 30 kHz. En 2019, des valeurs limites de 30 kHz à 150 kHz ont été introduites et l’écart par rapport à la norme a été complètement comblé. Au-dessus de 150 kHz et jusqu’à au moins 30 MHz, les valeurs limites s’appliquent également aux interférences émises par les appareils et les systèmes. Elles sont vérifiées dans un laboratoire d’essai lors d’un test CEM pour l’homologation de l’appareil.

Cela signifie que nous disposons aujourd’hui d’une gamme complète de niveaux de compatibilité…

Limits of IEC61000-2-2

Gamme de fréquences (kHz) à 50HzNiveau de compatibilité en %
2kHz to 3kHz1,4%
3kHz to 9kHz1,4% to 0,65%
Diminution logarithmique avec une augmentation logarithmique de la fréquence
Gamme de fréquences (kHz) Niveau de compatibilité en dB(yV)
9kHz to 30kHz129,5 to 122 dB(yV)
Valeur limite décroissant linéairement avec le logarithme de la fréquence 9kHz to 30kHz
30kHz to 50kHz122 bis 119 dB(µV)
Valeur limite décroissant linéairement avec le logarithme de la fréquence 30kHz to 50kHz
50kHz to 150kHz113 bis 89 dB(µV)
Valeur limite décroissant linéairement avec le logarithme de la fréquence 50kHz to 150kHz
Voltage mVdB (yV)
1000mV120dB
100mV100dB
10mV80dB

Presque toutes les charges laissent des traces sur le réseau ou, en d’autres termes, « Montrez-moi votre électricité et j’en saurai plus sur vous que vous ne le pensez » : « Montrez-moi votre électricité et j’en saurai plus sur vous que vous ne le pensez ».

J’avais installé un analyseur de puissance (PQ-Box 300) dans ma distribution secondaire au sous-sol et je voulais analyser la raison d’un déclenchement sporadique d’un disjoncteur différentiel.

La photo montre l’emplacement de l’appareil de mesure PQ-Box 300 et des pinces de courant L1, L2, L3, N-conducteur. Une autre pince de courant 5ème de grande taille a également enregistré le courant différentiel de tous les courants au niveau de la connexion au disjoncteur différentiel.

Outre l’analyse de l’appareil défectueux dans la maison qui déclenche mon RCD, j’ai remarqué que de nombreuses charges dans ma distribution laissent des traces dans le spectre de fréquence. J’ai pu identifier clairement de nombreux appareils dans la gamme de fréquences, bien qu’ils n’auraient certainement pas été remarqués dans le courant total de toute la maison avec toutes les charges. Ainsi, j’ai pu voir quand la machine à laver fonctionnait ou quand ma femme utilisait l’aspirateur, ce qui laisse une fréquence claire de 8 kHz dans le spectre.

L’image montre le spectre de toutes les fréquences de la tension jusqu’à 170 kHz sur une période d’une semaine dans une sorte de représentation en 3D. Les gradients de couleur indiquent le niveau des fréquences respectives.

J’ai trouvé intéressant de constater que même de très petites charges, comme l’une des Playsations 4 des enfants, pouvaient être clairement détectées dans le spectre de fréquences à 64 kHz, bien que j’aie effectué mes mesures à deux étages de distance. Ainsi, j’ai pu contrôler l’exigence de l’enfant de ne jouer qu’une heure par jour au maximum, même si je n’étais pas à la maison.

L’image montre la fréquence de 64kHz sur la phase de tension L1 dans la distribution. Comme la chambre d’enfant 1 est également connectée à la phase L1, c’est à ce moment-là que notre adolescent joue. Mais il ne nous laisse pas lui dire ce qu’il doit faire.

Les différentes hauteurs de niveau sont dues à d’autres charges qui sont actuellement allumées et à leur effet de compensation. Comme de nombreux autres appareils de la maison sont allumés à 20h30, par exemple, ils absorbent une partie de l’énergie de la fréquence de 64 kHz et réduisent ainsi le niveau d’interférence que je peux mesurer dans la distribution. À 1 heure du matin, seules quelques charges sont encore actives, les niveaux ont alors un effet plus important et peuvent être mesurés avec des valeurs plus élevées dans la distribution au sous-sol.

L’enfant de 12 ans a une limite de temps d’une heure et cette limite a été clairement dépassée dans ce cas avec 2 heures.

L’image montre la fréquence de 64 kHz sur la tension de la phase L3 de la distribution. Cette phase alimente également la deuxième chambre d’enfant et peut donc être clairement attribuée au fils cadet.

L’analyseur de qualité d’énergie PQ-Box 300 utilise des convertisseurs d’entrée analogiques-numériques 24 bits et un taux d’échantillonnage de 409,6 kHz. Grâce à la résolution extrêmement élevée, même les plus petits niveaux d’interférence de quelques millivolts peuvent être mesurés et attribués avec une grande précision. La plage de mesure des super harmoniques couvre des fréquences allant jusqu’à 170 kHz. Celles-ci peuvent être enregistrées en permanence, sans interruption, sur une longue période de mesure. Pour les problèmes décrits ci-dessus, il est rarement possible de détecter la cause à l’aide d’une courte mesure en ligne. En règle générale, toutes les données de mesure doivent être enregistrées sans restriction pendant au moins une semaine afin de pouvoir, par la suite, attribuer clairement le moment de la perturbation ainsi que la cause en corrélant les différentes valeurs de mesure.

Conclusion

Le retour d’information dans la gamme de fréquences comprise entre 2kHz et 150kHz est en constante augmentation dans nos réseaux énergétiques depuis plusieurs années et cette tendance va se poursuivre, également sous l’impulsion de la transition énergétique. D’autre part, nous contrôlons de plus en plus d’appareils et de systèmes avec de petits signaux. Les interférences mutuelles ne sont pas à exclure. Aujourd’hui, les règles du jeu pour le réseau public sont définies dans la norme CEM IEC61000-2-2, qui régit avec ses valeurs limites jusqu’à 150 kHz si une charge introduit des niveaux d’interférence trop élevés dans le réseau au niveau de la connexion, ou si un appareil perturbé a une immunité à l’interférence trop faible. La technologie de mesure peut le prouver. Si le niveau d’interférence reste inférieur aux valeurs limites et qu’une charge est influencée négativement, l’immunité aux interférences est probablement trop faible. Si la valeur limite de la norme est dépassée, il est presque certain que la source de l’interférence fournit trop de rétroaction dans le réseau.

L’analyseur de réseau de qualité d’énergie PQ-Box 300 utilisé utilise des convertisseurs d’entrée analogiques-numériques de 24 bits et un taux d’échantillonnage de 409,6 kHz. Grâce à la résolution extrêmement élevée, même les plus petits niveaux d’interférence de quelques millivolts peuvent être mesurés et attribués avec une grande précision. La plage de mesure des super harmoniques couvre des fréquences allant jusqu’à 170 kHz. Celles-ci peuvent être enregistrées en permanence, sans interruption, sur une longue période de mesure. Pour les problèmes décrits ci-dessus, il est rarement possible de détecter la cause à l’aide d’une courte mesure en ligne. En règle générale, toutes les données de mesure doivent être enregistrées sans restriction pendant au moins une semaine afin de pouvoir attribuer clairement le moment de la perturbation et la cause plus tard en corrélant les différentes valeurs de mesure.

Auteur
Jürgen Blum, Product Manager Power Quality Mobile

Vous souhaitez plus d’informations sur nos produits ?

Contactez nous!


Contacter

Nouveautés du groupe de produits

PQMobil - News

Vidéo de formation

Vidéo de formation »PQMobil« 6 : Présentation de WinPQ mobil 7.1

Dans cette vidéo, nous vous présentons toutes les nouvelles caractéristiques et fonctions de la dernière version du logiciel d'analyse »WinPQ mobil 7.1« pour nos analyseurs de qualité d'énergie portables. Profitez de la vidéo et des nouvelles possibilités offertes par votre PQ-Box d'A. Eberle.

Lire la suite

Blogpost

International Partner Week 2024 – une rétrospective

Notre Semaine internationale des partenaires 2024 - beaucoup d'anciens amis et aussi de nouveaux visages étaient invités, c'était un plaisir pour nous.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 5 : Régler les déclencheurs et les messages de perturbation

Découvrez les meilleurs paramètres de déclenchement pour votre »PQ-Box« afin d'enregistrer avec précision les perturbations du réseau. La vidéo montre comment configurer les enregistreurs de demi-cycles, d'oscilloscopes et de transitoires pour capturer de manière fiable les données de mesure essentielles.

Lire la suite

Blogpost

Action d’échange de PQ-Box : uniquement du 01.09 au 31.12.2024

Durée limitée dans le temps : Recevez un crédit pour l'échange de votre PQ-Box 100 ou d'un ancien appareil externe comparable (analyseur de réseau triphasé). Cliquez ici pour obtenir toutes les informations complémentaires sur cette action !

Lire la suite

Séminaire web

»PQMobil« Webinar: Grid Analysis in Public & Industrial Power Grids with »A. Eberle PQ-Boxes«

Webinaire enregistré du 2024-02-22: »PQMobil - Grid Analysis in Public & Industrial Power Grids with »A. Eberle PQ-Boxes«.

Lire la suite

Contribution au savoir

Surveillance de la tension

Découvrez dans cet article tout ce qu'il faut savoir sur la "surveillance de la tension". Qu'est-ce que la surveillance de la tension, pourquoi est-elle essentielle tant pour les entreprises de distribution d'électricité que pour les entreprises industrielles et comment est-elle mise en œuvre conformément aux normes ?

Lire la suite

Contribution au savoir

Qu’est-ce qu’une mesure de la courbe de charge/de la puissance ?

Cet article traite de la définition et de la différence entre la mesure de la courbe de charge enregistrée (RLM), la mesure de la puissance enregistrée et le profil de charge standard. Il s'agit de méthodes importantes pour mesurer avec précision la consommation d'énergie dans le commerce, la grande industrie et les ménages.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 4 : Créer et configurer des rapports PQ avec le logiciel WinPQ mobil

Cette vidéo explique comment créer et configurer des rapports Power Quality avec le logiciel »WinPQ mobil«.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 3 : Utilisation et fonctions de l’application PQ-Box

Cette vidéo vous présente l'utilisation et les fonctions de l'application »PQ-Box App« pour nos analyseurs de qualité d'énergie portables.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 2 : Navigation dans les menus et utilisation de la PQ-Box

Dans cette courte vidéo d'introduction, nous vous présentons comment naviguer et utiliser nos analyseurs de qualité d'énergie portables »PQ-Box 150«, »PQ-Box 200« et »PQ-Box 300« de la famille PQ-Box.

Lire la suite

Séminaire web

»PQMobil« Webinar : Mesure portable de la qualité de l’électricité

Webinaire enregistré du 2024-04-09: »PQMobil - Mesure portable de la qualité de l'électricité«.

Lire la suite

Vidéo de formation

Vidéo de formation »PQMobil« 1 : Démarrer avec PQ-Box

Cette vidéo montre en détail comment connecter la »PQ-Box« et enregistrer des mesures. Ensuite, le logiciel »WinPQ mobil« est utilisé pour visualiser les données de mesure, les analyser et créer un rapport.

Lire la suite

Publication spéciale

Compteur Ferraris vs. Compteur Numérique

Ce rapport technique présente l'analyse d'une mesure de puissance chez un grand client industriel. Le client enregistre des courants et des tensions de cinquième harmonique très importants pendant la période de production, ce qui entraîne une mauvaise qualité de la tension.

Lire la suite

Contribution au savoir

Mesure du courant différentiel

Dans cet article, vous apprendrez ce que sont la mesure et la surveillance du courant résiduel et pourquoi il est important de mesurer le courant résiduel.

Lire la suite

Contribution au savoir

Qualité de l’énergie

La bonne qualité de l'électricité se caractérise par le fait que la tension secteur qui arrive effectivement au consommateur correspond à la tension secteur promise par la compagnie d'électricité.

Lire la suite

Contribution au savoir

Puissance réactive – définition, calcul et mesure

Le rôle clé de la puissance réactive dans l'électrotechnique : définition, calcul, mesure et différences avec la puissance active et la puissance apparente. Découvrez comment la puissance réactive influence l'efficacité des réseaux électriques et façonne le transfert d'énergie.

Lire la suite

Contribution au savoir

Qu’est-ce que la puissance apparente et comment est-elle calculée ?

Cet article traite de la question de savoir ce qu'est la puissance apparente et comment la calculer. Comprendre la puissance apparente est essentiel pour dimensionner correctement les onduleurs et donc pour optimiser l'efficacité et la performance des installations photovoltaïques.

Lire la suite

Publication spéciale

Détermination de l’angle des harmoniques de tension et de courant dans la pratique

Déterminer les causes des harmoniques dans le réseau énergétique en pratique. Aujourd’hui, il n’y a pratiquement plus de consommateurs qui […]

Lire la suite

Lettre d'information

Lettre d’information n° 1 : Transformateurs de mesure dans les réseaux triphasés (Partie 1)

La connexion directe des appareils de mesure au réseau est limitée, pour des raisons de sécurité, à des valeurs...

Lire la suite

Lettre d'information

Lettre d’information n° 2 : Transformateurs de mesure dans les réseaux triphasés (Partie 2)

Dans un réseau triphasé symétriquement chargé à trois fils, un transformateur de tension isolé à deux pôles...

Lire la suite

Lettre d'information

Lettre d’information n° 4 : Somme des courants alternatifs

Pour la connexion en parallèle de sources d'énergie, le principe de superposition s'applique, lorsque toutes les ressources...

Lire la suite

Lettre d'information

Lettre d’information n° 5 : Tension homopolaire dans les réseaux triphasés

En cas de fonctionnement en réseau équilibré et d'inégalité des impédances dans le circuit consommateur, la phase...

Lire la suite

Lettre d'information

Lettre d’information n° 8 : Puissance apparente et puissance réactive dans les réseaux triphasés

La gamme d'appareils de mesure électromécaniques et électroniques en technologie analogique et numérique...

Lire la suite

Lettre d'information

Lettre d’information n° 19 : L’évaluation de la qualité de la tension et la détection des perturbations sur le réseau moyenne tension

L'intérêt pour une surveillance permanente de la qualité de la tension dans le réseau moyenne tension augmente...

Lire la suite

Lettre d'information

Lettre d’information n° 20 : Capacité des lignes

Parmi les lignes d'alimentation électrique, on distingue...

Lire la suite

Demande de contact:



* Champs obligatoires

Vos données sont en cours de traitement

a-eberle kontakt newsletter ×

Nos séminaires &
Webinars

► Inscrivez-vous ici !

x