Info Letter No. 20
Capacitance of conductors

1 Conductors as capacitors

In the conductors of electrical power supplies, a distinction is made between the operating capacitance C_{b}, the three phase-phase capacitances C_{L} and the three phaseearth capacitances C_{e}. The operating capacitance is determined by the capacitive reactive power demand of a conductor and the phase-earth capacitance of the singlephase fault current in the insulated or compensated networks. Single conductor cables are designed to have no phase-phase capacitance.
The capacitance of a parallel plate capacitor depends on the size of the plates, the electrical properties of the dielectric and the distance between the plates.

$$
C=\frac{A \cdot \varepsilon}{a}
$$

$A=$ Plate size
$\varepsilon=$ Dielectric constant
$a=$ Distance between plates

An electrical conductor is a cylindrical capacitance where the surface is a circle. And thus the equation changes.

$$
C=\frac{2 \cdot \pi \cdot l \cdot \varepsilon}{\ln \frac{a}{r}}
$$

$l=$ Length of the cylinder
ln = Natural logarithm
$a=$ Radius of the insulation
$r=$ Conductor radius

2 Cable

2.1 Single core radial field cable

$C_{\mathrm{b}}=C_{\mathrm{e}}$
$C_{\mathrm{e}}=\frac{2 \cdot \pi \cdot \varepsilon_{0} \cdot \varepsilon_{\mathrm{r}}}{\ln \frac{a}{r}}$
$C_{b}=$ Operating capacitance
$C_{e}=$ Phase-earth capacitance
$\varepsilon_{0}=$ electrical field constant $8.85 \mathrm{pF} / \mathrm{m}$
$\varepsilon_{r}=$ relative dielectric constant
$a=$ Radius of the insulation
$r=$ Radius of the conductor

2.2 Three-core belted cables

$$
C_{b}=C_{\mathrm{e}}+3 \cdot C_{\mathrm{L}}
$$

$C_{L}=$ Phase-phase capacitance
$a=$ Radius of the insulation
$r=$ Radius of the conductor
$c=$ Cable centre - conductor centre distance

3 Overhead cable

To calculate the operating capacitance, the deltaconnected phase-phase capacitance has to be converted into an equivalent star connection and added to the phase-earth capacitances.

$$
C_{\mathrm{b}}=C_{\mathrm{e}}+3 \cdot C_{\mathrm{L}}
$$

The load current per phase is then

$$
I_{\mathrm{L}}=\frac{U_{\mathrm{N}}}{\sqrt{3}} \cdot \omega \cdot C_{\mathrm{b}}
$$

and the earth fault current per phase is

$$
I_{\mathrm{Ce}}=U_{\mathrm{N}} \cdot \omega \cdot C_{\mathrm{e}}
$$

and for one conductor

$$
I_{\mathrm{Ce}}=\sqrt{3} \cdot U_{\mathrm{N}} \cdot \omega \cdot C_{\mathrm{e}}
$$

$C_{\mathrm{b}}=C_{\mathrm{e}}+3 \cdot C_{\mathrm{L}} \quad C_{\mathrm{e}}=\frac{2 \cdot \pi \cdot \varepsilon_{0} \cdot \varepsilon_{\mathrm{r}}}{\ln \frac{2 \cdot h_{\mathrm{m}} \cdot d_{\mathrm{m}}}{r \cdot D_{\mathrm{m}}}}$
$h_{m}=$ average height above the ground (sag)
$d_{m}=$ average phase distance
$D_{m}=$ average reflection distance

Characteristics of a conductor

	$\boldsymbol{C}_{\boldsymbol{b}}$	$\boldsymbol{C}_{\boldsymbol{e}}$	$\boldsymbol{C}_{\boldsymbol{L}}$	$\boldsymbol{I}_{\boldsymbol{e}}$	$\boldsymbol{I}_{\boldsymbol{L}}$
20 kV overhead cable	$\sim 9 \mathrm{nF} / \mathrm{km}$	$\sim 4.5 \mathrm{nF} / \mathrm{km}$	$\sim 1.5 \mathrm{nF} / \mathrm{km}$	$0.05 \mathrm{~A} / \mathrm{km}$	$0.03 \mathrm{~A} / \mathrm{km}$
110 kV overhead cable	$\sim 11 \mathrm{nF} / \mathrm{km}$	$\sim 5 \mathrm{nF} / \mathrm{km}$	$\sim 1.6 \mathrm{nF} / \mathrm{km}$	$0.3 \mathrm{~A} / \mathrm{km}$	$0.22 \mathrm{~A} / \mathrm{km}$
10 kV cable $\mathrm{N}(\mathrm{A}) \mathrm{KBA} 3 \times 120 \mathrm{~mm}^{2}$	$\sim 560 \mathrm{nF} / \mathrm{km}$	$\sim 410 \mathrm{nF} / \mathrm{km}$	$\sim 50 \mathrm{nF} / \mathrm{km}$	$2.2 \mathrm{~A} / \mathrm{km}$	$1.0 \mathrm{~A} / \mathrm{km}$
20 kV cable $\mathrm{N} 2 \mathrm{XSY} 1 \times 150 \mathrm{~mm}^{2}$	$\sim 250 \mathrm{nF} / \mathrm{km}$	$\sim 250 \mathrm{nF} / \mathrm{km}$	0	$3.0 \mathrm{~A} / \mathrm{km}$	$1.0 \mathrm{~A} / \mathrm{km}$

If, for example, a 20 kV cable is used in a 10 kV network, the capacitive currents are then reduced by half (half operating voltage)!

References:

[1] Flosdorff, R.; Hilgarth, G.: Elektrische Energieverteilung. B.G. Teubner Verlag Stuttgart
[2] Heinbold, L.: Kabel und Leitungen für Starkstrom. Teil 1, 4. Auflage 1987 Verlag Siemens AG.
[3] Gremmel, H.: Schaltanlagen. 12 Auflage, ABB Calor Emag Mannheim Cornelsen Verlag

Author: Dieter Spiertz www.info@a-eberle.de

The series will be continued.
We will gladly supply missing Info Letters at any time!

