Position Indicator Interface Typ REG-FR 'B2'

The REG-FR resistance interface converts the position of a tap changer with resistor row into a BCD code for RegSys system. A build-in power supply supports the measure transducer, voltage outputs and relays.
Tap changer resistors (same values) will be connected to the measure input of REG-FR by only 3 or 4 wires. The resistor step value (Rs) of one of these resistors should be adjusted by potentiometer R and will be displayed by a voltage measurement on both front connectors (range DC $5 \mathrm{~V}, \operatorname{Rin}>500 \mathrm{k} \Omega / \mathrm{V}$), with $0.1 \mathrm{~V} / \Omega$ at feature ' $\mathrm{R} 1 ; 0.5 \mathrm{~V} / \Omega$ at $\mathbf{~} \mathbf{R 2} \mathbf{;} ; 1 \mathrm{~V} / 100 \Omega$ at 'R3; $0.5 \mathrm{~V} / 100 \Omega$ at ' $\mathrm{R} 4 ; 0.5 \mathrm{~V} / 10 \Omega$ at feature 'R5 on display.

6 relay contacts (NO contacts) and 6 current outputs make the BCD code available for further use.

- Up to 37 uniform resistor tap-change positions are converted into a BCD code
- 3- or 4-wire connection is applicable
- Up to 100 m distance between tap changer and REG-FR
- Contacts with AC 250 V 2A, DC 220 V 150 W
- Large auxiliary voltage range of the power supply

Technical specifications

Regulations and standards

IEC1010, IEC801-1 to 6, VDE0110, VDE0160
$\begin{array}{ll}\text { Interference immunity } & \text { EN50082-2 } \\ \text { Emitted interference } & \text { EN50081-2, EN55011 }\end{array}$
Mechanical data
Construction
Connector
Degree of protection
Weight
Mounting
Wall mountable Aluminum case 205x130x67 mm (LxWxH)
2 pieces; 'F1': 10pol; 'F2': 16pol IP40
inclusive 2 connectors $<1.2 \mathrm{~kg}$ 4-hole assembly,
center on $130 \times 120 \mathrm{~mm}$
Input
Row resistor Rs $\quad 1.5$.. 10Ω each Step (feature R2)
5 .. 50Ω each Step (feature R1)
$30 . .100 \Omega$ each Step (feature R5)
100 .. 500Ω each Step (feature R3) 200 .. 1000Ω each Step (feature R4)
Number of tap changer resistors <38
Resistor tolerance Rs <2 \% from adjusted value wire 3-/ 4-wire connection compensates wire resistance RL
Wire resistance RL
$<20 \Omega$
Measure current IK
0.1.. 10 mA through resistor row

AC voltage on input $<0.3 \vee 50 \mathrm{~Hz}$

Output
Binary output BCD 1 ... BCD 20/sign- to the BCD input (50V) of the REG-D; reference BCD GND
Voltage at 10 kOhm
ON (1) ≥ 10 V DC
OFF (0) $\leq 5 \mathrm{~V}$ DC
Voltage output U+ $\quad 15 \mathrm{~V}$ DC $\pm 10 \%$; reference GND; Internal resistance $1 \mathrm{k} \Omega$
Relays with one N/O contact for output:
BCD Codes 1..20/sign- contact closed (1) / open (0)
Potential isolation auxiliary voltage and relays contacts from each other and all other circuits AC 250 V 2 A, DC 220 V 150 W
Contact load
$<10^{5}$

Code table

Res.-Step Input:	Dez	Output signal BCD-Code				2	1
0 Ohm	1	0	0	0	0	0	1
$1 \times \mathrm{Rs}$	2	0	0	0	0	,	0
$2 \times \mathrm{Rs}$	3	0	0	0	0	1	1
$8 \times \mathrm{Rs}$	9	0	0	1	0	0	1
$9 \times \mathrm{Rs}$	10	0	1	0	0	0	0
$28 \times \mathrm{Rs}$	29	1	0	1	0	0	1
\ldots $29 \times R s$	30		1	0	0	0	0
$30 \times \mathrm{Rs}$	31	1	1	0	0	0	1
broken wire	39		1	1	0	0	1

Transfer behavior

By default the REG-FR is set to 3-wire connection and the tapchanger resistor to $10 \Omega /$ step at feature R1 ($3.0 \Omega /$ step at feature R2; $100 \Omega /$ step at feature R3; $200 \Omega /$ step at feature R4; 30Ω /step at feature R5) adjusted. If a different adjustment value is required, please specify when ordering.

Cutting the wire on PC board and the wire between connector F2/11 and F2/12 activates the 4 wire resistance compensation. No measure current flows thru the tap switch and short disconnections will be suppressed.

Safety

Safety class / overvoltage category
I/II
Contamination level
Test voltage
Measurement input, BCD-output
AC 2.3 kV

Auxiliary voltage
to auxiliary voltage to relay contacts to relay contacts
Power supply
Galvanically Feature H1 AC 100 ... 240 V / DC $100 \ldots 353 \mathrm{~V}$ isolated Feature H2 AC $20 \ldots 60 \mathrm{~V} / \mathrm{DC} 20 \ldots 72 \mathrm{~V}$
Power consumption $<6 \mathrm{VA} / 6 \mathrm{~W} \mathrm{H} 1 ; 1 \mathrm{~A} / \mathrm{T}$ H2; $2 \mathrm{~A} / \mathrm{T}$
Temperature
Operation
Storage, transport
$0 \ldots+55^{\circ} \mathrm{C}$
$-25 \ldots+75^{\circ} \mathrm{C}$

Contact assignment

connector F1 10pol.	
1	AC/DC L (+)
2	AC/DC N (-)
4	Relay common
5	Rel. 20 od.sgn-
6	Relay BCD10
7	Relay BCD 8
8	Relay BCD 4
9	Relay BCD 2
10	Relay BCD 1

connector F2 16pol.	
11	lk
12	Rsi
13	Rsg
14	GND R
19	U+
20	GND BCD
21	BCD 20 od.sgn-
22	BCD 10
23	BCD 8
24	BCD 4
25	BCD 2
26	BCD 1

A FastOn-male 6.3 mm on case allows the connection of a protective earth wire.

We take care of it.

Features			Code		
Position indicator interface REG-FR		wall mount case	REG-FR B2		
Auxiliary voltage galvanically isolated	AC $100 . .240 \mathrm{~V} /$ AC 20... $60 \mathrm{~V} /$	$\begin{aligned} & \hline \text { DC } 100 \ldots 353 \mathrm{~V} \\ & \text { DC } \quad 20 \ldots 72 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{H} 1 \\ & \mathrm{H} 2 \end{aligned}$	Transfer behavior	Sample calculation
Row resistor Rs	Rs / step	$1.5 \ldots 10 \Omega$	R2	$0.5 \mathrm{~V} / \Omega$	3.0 R*0.5 $=1.5 \mathrm{~V}$
	Rs / step	$5 \ldots 50 \Omega$	R1	$0.1 \mathrm{~V} / \Omega$	$24 \mathrm{R}^{*} 0.1=2.4 \mathrm{~V}$
	Rs / step	$30 \ldots 100 \Omega$	R5	$0.5 \mathrm{~V} / 10 \Omega$	$83 \mathrm{R} 0.5 / 10=4.15 \mathrm{~V}$
	Rs / step	$100 . . .500 \Omega$	R3	$1.0 \mathrm{~V} / 100 \Omega$	$300 \mathrm{R} * 1 / 100=3.0 \mathrm{~V}$
	Rs / step	$200 . . .1000 \Omega$	R4	$0.5 \mathrm{~V} / 100 \Omega$	$500 \mathrm{R} * 0.5 / 100=2.50 \mathrm{~V}$
Deviating code table (max. 6 outputs) 4-wire compensation			Y99	Specify deviating code table when ordering: Example: -9 ... -0 ... 19	

The interface is also available in a 19" plug-in modules 8 TE 3 HE (feature B1) or panel mount case with display (feature B3). Further, interfaces with standard signal input $0 / 4 \ldots 20 \mathrm{~mA}$ or output codes such as BINARY, AWZ or GRAY-code are available.

Accessories: Control panel $96 \times 48 \mathrm{~mm}$ with 20 mm display

For longer distances between REG-FR and the step resistance Rs, the maximum cable length is less due to the DC resistance (see example), but rather determined by interference from parallel cables. A superimposed AC voltage up to 0.3 V at the REG-FR input is allowed. Each application has different earthing and voltage conditions. It can only be said in general, with shielded cables and greater distance to the parallel cables, a longer distance are possible.

Calculate example cable length $L \quad$ Wire Gauge 20AWG $A=0.5 \mathrm{~mm}^{2}$ (four-wire with each $\mathrm{d}=0.8 \mathrm{~mm}$, shielded) $R L$ line $=$ supply or return line $=12 \Omega \quad$ rho $C U 0.02$ for solid wire $\quad L=R \times A / r h o=12 \times 0.5 / 0.02=300 \mathrm{~m}$ $12 \Omega 0.5 \mathrm{~mm}^{2}$ results 300 m wire length. The interface can compensate the DC resistor of this wire. No interference was considered.
Adjust step resistance Rs with the front panel potentiometer R to $\pm 0.2 \%$ accuracy. Is the Step resistance not exactly known, an LED in the '+' measuring socket indicates the respective step centre.
When the step resistance Rs $>100 \Omega /$ step, the 2 -wire circuit can be used. For this case, bridge pins F2/ 6d - 8d and F2/2d - 4d.
If a different code table is needed, please place this when ordering. Example: -9 ... -0 ... 19
A subsequent change via solder bridges is possible. There is a separate description on request available.
A. Eberle GmbH \& Co. KG

Frankenstr. 160 D-90461 Nürnberg
Subject to change without notice.

Tel.: +49 (0) 911/ 6281 08-0
Fax.: +49 (0) 911/ 6281 08-99
Page 2
http://www.a-eberle.de
E-mail: info@a-eberle.de

