Transformateurs de mesure dans les réseaux triphasés (Partie 1)

Lettre d’information n° 1

Transformateur pour valeurs alternatives

Le raccordement direct des appareils de mesure au réseau est limité, pour des raisons de sécurité, à des valeurs inférieures à environ 500 V à 800 V pour les tensions et 10 A pour les courants. Les entrées ayant des valeurs de fonctionnement plus élevées sont adaptées à la plage d’entrée de l’équipement de mesure à l’aide de transformateurs.

Les transformateurs pour les valeurs alternatives sont des transformateurs de faible puissance fonctionnant bien en dessous de la limite de saturation du noyau de fer. Les valeurs élevées d’une valeur de grille (valeurs primaires X1) sont converties avec précision en amplitude et en phase en valeurs plus faibles (valeurs secondaires X2) par conversion et séparation galvanique. Les valeurs de la grille peuvent donc être mesurées plus facilement et avec moins de danger.

Traduction nominale

Les valeurs nominales X1n, les valeurs primaires et X2n les valeurs secondaires et donc la translation nominale Kn déterminent le choix du transformateur.

K_{n} = \frac{X_{1n}}{X_{2n}}
K_{nu} = Voltage\:transformer\:nominal\:translation
K_{ni} = Current\:transformer\:nominal\:translation

Exemple 1.1

Données de transformateur actuelles :

X_{1n} = 1000 A; X_{2n}= 5 A

Traduction nominale du transformateur de courant :

K_{ni} = 1000 A : 5 A = 200

Conversion des valeurs mesurées de la puissance

La valeur mesurée de la puissance côté ligne est le produit de la valeur mesurée de la puissance dans le circuit secondaire et de la translation nominale des transformateurs de courant et de tension.

P_{prim} = P_{sek} * K_{nu} * K_{ni}

Cette corrélation est la même pour tous les types de réseaux. Dans les réseaux triphasés, la translation nominale de tous les transformateurs de tension et de tous les transformateurs de courant doit être la même.

Exemple 1.2

Données du réseau : 300 MW, 110 kV

Transformateur de mesure :

K_{nu} = 110 kV / \sqrt{3} : (100 V / \sqrt{3} )= 1,1 *10^{3}
K_{ni} = 1200A /1A =1,2 *10^{3}

Valeur de la puissance du côté secondaire :

P_{Sek}= (300*10^{6}W):(1,0*10^{3}*1,2*10^{3}) = 300 : 1,2 \newline= 250 W

Transformateur de courant

Un transformateur de courant est un transformateur dont l’enroulement secondaire est presque court-circuité. Le circuit secondaire doit toujours être fermé. Le fonctionnement avec un circuit de courant ouvert (à vide, enroulement secondaire ouvert), en raison de l’absence d’induction mutuelle et de la multiplication des pertes ferriques qui en résulte, provoque un échauffement important du noyau du transformateur et, dans les cas extrêmes, une explosion. En raison du rapport important entre l’enroulement primaire et l’enroulement secondaire, une tension élevée et dangereuse peut apparaître aux bornes de l’enroulement secondaire, ce qui peut également provoquer des arcs électriques entre les enroulements. Pour ces raisons, les fusibles ne doivent pas être utilisés dans le circuit secondaire.

Mise à la terre de l’enroulement secondaire

Pour des raisons de sécurité, l’enroulement secondaire d’un transformateur de courant installé dans un réseau à haute tension est mis à la terre d’un côté afin d’éviter que le personnel d’exploitation ne soit mis en danger par une haute tension en cas de rupture de l’isolation de l’enroulement. Cette exigence est définie dans la norme VDE 0100 pour les transformateurs de mesure à partir de la série 3 (tension de service de 3 kV).

La mise à la terre de l’enroulement secondaire n’est pas exigée pour les séries 0,5 et 1, mais elle est souvent nécessaire pour des raisons techniques, afin de créer un point de référence défini dans un circuit de courant et de dissiper les tensions parasites vers la terre.

Valeur nominale I2n

Les valeurs nominales normalisées des courants secondaires sont les suivantes :
1 A, 2 A et 5 A.

Classes de précision des transformateurs de courant

Les transformateurs de courant sont produits dans les classes 0,1 ; 0,2 ; 0,5 ; 1 ; 3 ; 5.

Désignation des bornes du transformateur de courant

Conformément à la norme DIN 0414, les désignations des bornes pour l’enroulement primaire sont K et L et k et l pour l’enroulement secondaire.

K du côté du générateur et L du côté du consommateur.

Désignation des bornes dans les transformateurs de courant conformément à la norme DIN 0414.

Vous avez des questions ?

Contactez-nous ici


Contact

Nouveautés des groupes de produits

LVRSys®, PQMobil, PQSys, EORSys, EORSys, REGSys®, – News

Contribution au savoir

Le défaut à la terre expliqué – Principes et fonctions d’un phénomène électrique

Tout sur les fuites à la terre - des bases aux conséquences en passant par les causes et les exemples. Apprenez-en plus dans cet article sur l'extinction, la compensation et la localisation des défauts de terre et sur les avantages d'une surveillance constante pour garantir un réseau électrique sûr.

Lire la suite

Contribution au savoir

Mesure du courant différentiel

Dans cet article, vous apprendrez ce que sont la mesure et la surveillance du courant résiduel et pourquoi il est important de mesurer le courant résiduel.

Lire la suite

Contribution au savoir

Qualité de l’énergie

La bonne qualité de l'électricité se caractérise par le fait que la tension secteur qui arrive effectivement au consommateur correspond à la tension secteur promise par la compagnie d'électricité.

Lire la suite

Contribution au savoir

Puissance réactive – définition, calcul et mesure

Le rôle clé de la puissance réactive dans l'électrotechnique : définition, calcul, mesure et différences avec la puissance active et la puissance apparente. Découvrez comment la puissance réactive influence l'efficacité des réseaux électriques et façonne le transfert d'énergie.

Lire la suite

Contribution au savoir

Qu’est-ce que la puissance apparente et comment est-elle calculée ?

La puissance apparente est un terme utilisé en électrotechnique pour décrire la puissance apparente dans un système de courant alternatif. Elle se compose de la puissance active (la puissance réellement utilisée) et de la puissance réactive (la puissance non utilisée pour le travail). L'unité de la puissance apparente est le voltampère (VA).

Lire la suite

Contribution au savoir

Prêt pour le réseau intelligent du futur ?

Toutes les informations sur les réseaux électriques intelligents, la technologie qui les sous-tend, les avantages, les inconvénients, les défis et la diffusion actuelle.

Lire la suite

Publication spéciale

Régulation parallèle de transformateurs à gradins avec REGSys®

La régulation des transformateurs avec changeurs de prises est un sujet essentiel dans le domaine de l'alimentation et de la distribution d'énergie. Aujourd'hui, ces tâches sont accomplies électroniquement avec une qualité de régulation élevée. Des régulateurs numériques, tels que le système de régulation de tension REGSys® librement programmable, sont utilisés.

Lire la suite

Publication spéciale

Gestion économique des stations de réseau local numérique : l’EOR-3DS en tant qu’unité de numérisation pour les stations de réseau local

Les sous-stations numériques deviennent un élément clé permettant aux gestionnaires de réseaux de distribution d'automatiser, de surveiller et d'exploiter efficacement leurs réseaux. Lisez ce rapport technique sur l'EOR-3DS dans son rôle d'unité de numérisation pour les stations du réseau local.

Lire la suite

Lettre d'information

Lettre d’information n° 3 : La bobine d’induction en général

La bobine de compensation de défaut de terre, e-coil ou également appelée bobine de Petersen d'après son inventeur, est connectée...

Lire la suite

Lettre d'information

Lettre d’information n° 5 : Tension homopolaire dans les réseaux triphasés

En cas de fonctionnement en réseau équilibré et d'inégalité des impédances dans le circuit consommateur, la phase...

Lire la suite

Lettre d'information

Lettre d’information n° 6 : Détection des défauts transitoires à la terre

Lorsqu'il y a un défaut à la terre dans un conducteur, au début du défaut à la terre, trois événements se produisent...

Lire la suite

Lettre d'information

Lettre d’information n° 7 : Variation de la tension en fonction de la charge

Pour la régulation de la tension ULoad à une valeur prédéterminée au point de charge spécifié (par exemple...

Lire la suite

Lettre d'information

Lettre d’information n° 8 : Puissance apparente et puissance réactive dans les réseaux triphasés

La gamme d'appareils de mesure électromécaniques et électroniques en technologie analogique et numérique...

Lire la suite

Lettre d'information

Lettre d’information n° 10 : Régulation de la tension avec des transformateurs d’étage parallèles aux barres omnibus (Partie 2)

Les considérations suivantes s'appliquent à un fonctionnement symétrique d'un réseau triphasé, de sorte que les...

Lire la suite

Lettre d'information

Lettre d’information n° 11 : Régulation de la tension avec des transformateurs d’étage en parallèle aux jeux de barres (Partie 3)

La mesure directe du courant de circulation n'est pas possible avec les appareils de mesure habituels...

Lire la suite

Lettre d'information

Lettre d’information n° 12 : Contrôle de la bobine d’allumage : Procédure de la courbe de résonance – Procédure de la courbe de localisation

Dans les "réseaux compensés", le courant passant par le point de défaillance est minimisé à l'aide d'un...

Lire la suite

Lettre d'information

Lettre d’information n° 13 : Fonctionnement en parallèle des transformateurs en escalier

La règle empirique veut qu'en cas de fonctionnement en parallèle des transformateurs, le rapport des puissances nominales ne doit pas...

Lire la suite

Lettre d'information

Lettre d’information n° 14 : Localisation des défauts à la terre à l’aide de la procédure harmonique (Partie 1)

Pour les considérations suivantes, un réseau avec trois sorties et un défaut à la terre dans la ligne 1 de la sortie...

Lire la suite

Lettre d'information

Lettre d’information n° 15 : Localisation des défauts à la terre à l’aide de la procédure harmonique (Partie 2)

Pour l'étude du comportement des courants et tensions harmoniques dans le réseau compensé, à...

Lire la suite

Lettre d'information

Lettre d’information n° 16: Température du point chaud et durée de vie des transformateurs

La défaillance d'un transformateur n'a pas seulement des conséquences économiques majeures pour le fournisseur d'énergie, elle peut...

Lire la suite

Lettre d'information

Lettre d’information n° 17 : Relais de défaut de terre transitoire à haute résistance, intermittent et récurrent (Partie 1)

Les statistiques montrent que les défauts de terre constituent une grande partie des défauts du réseau. Les relais conventionnels...

Lire la suite

Lettre d'information

Lettre d’information n° 18 : Relais transitoire pour les défauts de terre à haute résistance, intermittents et récurrents (Partie 2)

La figure 3 peut également être utilisée pour la détermination des défauts statiques à la terre. Dans un réseau isolé, l'ensemble...

Lire la suite

Lettre d'information

Lettre d’information n° 19 : L’évaluation de la qualité de la tension et la détection des perturbations sur le réseau moyenne tension

L'intérêt pour une surveillance permanente de la qualité de la tension dans le réseau moyenne tension augmente...

Lire la suite

Lettre d'information

Lettre d’information n° 21 : L’influence de la résistance de contact à l’endroit du défaut à la terre sur la tension homopolaire UEN dans les réseaux compensés

Le défaut de terre dans les réseaux compensés est généralement présenté sans résistance de contact au niveau du défaut...

Lire la suite

Lettre d'information

Lettre d’information n° 22 : Définition des mesures de puissance selon les normes DIN 40110-2 et IEEE 1459

Il existe une large gamme d'appareils de mesure électroniques pour la mesure numérique de la puissance...

Lire la suite

Demande de contact:



* Champs obligatoires

Vos données sont en cours de traitement

a-eberle kontakt newsletter ×

Nos séminaires &
Webinars

► Inscrivez-vous ici !

x

WEBINAIRE GRATUIT : Cliquez sur "S'inscrire ici" ci-dessous !