+++ PQ-Box Trade-in Promotion: Only From 01.09. – 31.12.2024 +++ Attractive Discount on Your PQ-Box Order +++ Click Here for More Information! +++

+++ PQ-Box Trade-in Promotion: Only From 01.09. – 31.12.2024 +++ Attractive Discount on Your PQ-Box Order +++ Click Here for More Information! +++

+++ PQ-Box Trade-in Promotion: Only From 01.09. – 31.12.2024 +++ Attractive Discount on Your PQ-Box Order +++ Click Here for More Information! +++

Performance increase in the distribution grid

Our Low Voltage Regulation System LVRSys® as a useful tool for the future

Grid congestion causes rejection of PV connection requests by grid operators

Due to economic unreasonableness, grid operators are rejecting applications to connect PV systems in the low-voltage grid more often. The responsible grid planners are guided by the connection guideline VDE-AR-N 4105, in which decentralized generation facilities may only raise the voltage level in the low-voltage grid by 3% compared to the previous situation. Potential photovoltaic plants are thus not realized, despite existing technical transmission capacity.

The current-carrying capacity of the grids is rarely approached by complying with the directive.

The following voltage drop analysis demonstrates the limitations of integrating photovoltaic systems into the low-voltage grid using traditional calculation methods and outlines a way out using the Low-Voltage Regulation System LVRSys®.

Voltage increase due to grid integration of PV systems

According to the fundamentals of electrical science, the voltage drop of power along a line can be calculated using the following formula:

Figure 1 illustrates the normalized voltage drop (3%) from the line impedance (line length and cross-section) depending on the power. Aluminum cables with cross sections of 4 x 150 mm² and 4 x 240 mm² are frequently used in the European low-voltage grid. These cables may be loaded up to a length of 120 m or 140 m at 100 % (250 kW / 186 kW) and at a length of 500 m at the end of the cable only with 42 kW or 65 kW, respectively, in order to comply with the 3 % criterion. After 500 m, the load of the cables is only approx. 25 %. Therefore, after a short cable length, the limiting parameter for the connection of distributed generation plants is no longer the current carrying capacity, but the voltage maintenance.

Figure 1: Permissible active power according to cross-section and cable length for a voltage drop of 3%
Figure 2: Permissible active power according to cross-section and cable length for a voltage drop of 9%

Using a LVRSys® low-voltage control system with an exemplary control range of ±6%, the permissible voltage drop that must be maintained increases from 3% to 9% (Figure 2). The 4 x 150 mm² or 4 x 240 mm² cables can be 100% loaded by using the controller up to a length of 350 m or 390 m, respectively, without violating the 3% criterion. The grid integration of decentralized generation facilities can therefore be increased up to the technical utilization limit (current carrying capacity) of the cables. For longer cable sections, the grid integration can be increased 4-fold by using controllers.

This example illustrates that the LVRSys® is a building block for low-voltage grids to advance the energy transition in a cost-effective manner.

LVRSys® – the Cost and Time Efficient Alternative to Line/Grid Expansion

Cost and Time Efficient, Easy to Install, Flexible & Low/No-Maintenance

Do you have questions about our LVRSys®?

Contact us!


Contact

News From the Product Group

LVRSys® - News

Blogpost

International Partner Week 2024 – A look back

Our International Partner Week 2024 - many old friends and new faces were our guests, it was a pleasure.

Read more

General Knowledge

Voltage Stability

Where and why does voltage stability play such an important role today? What are the current and future challenges? And what methods are there for voltage stability in the low-voltage grid? We answer the most important questions in this article!

Read more

Blogpost

»LVRSys®« Low-Voltage Regulate: Info Day With Live Demonstration in Nuremberg

This week, the Chair of Electrical Energy Systems at FAU Erlangen-Nuremberg visited our Info Day in Nuremberg together with many interested participants. The highlight was the live demonstration of the »LVRSys® low-voltage regulate system«.

Read more

Webinar

»LVRSys®« Webinar: The Solution for Voltage Stability Problems in Industrial Facilities

Webinar recording from 2023-06-06: »LVRSys® - The Solution for Voltage Stability Problems in Industrial Facilities«.

Read more

Webinar

»LVRSys®« Webinar: The Solution for Voltage Stability Problems in Low-Voltage Grid

Webinar recording from 2023-06-06: »LVRSys® - The Solution for Voltage Stability Problems in Low-Voltage Grid«.

Read more

Webinar

»LVRSys®« Webinar: The Solution for Voltage Stability Problems | Integrate Electromobility, PV & Heat Pumps

Webinar recording from 2024-03-19: »LVRSys® - The Solution for Voltage Stability Problems | Integrate Electromobility, PV & Heat Pumps«.

Read more

Special Publication

Experimental Validation of a Low-Voltage Regulator Model – Case Study of a Maltese Low-Voltage Grid

This application report addresses the integration of the »LVRSys® Low-Voltage Regulation System« into the low-voltage grid in Malta.

Read more

General Knowledge

Ready for the smart grid of the future?

All information about smart grids/intelligent power grids, the technology behind them, advantages, disadvantages, challenges and current distribution.

Read more

Blogpost

A. Eberle Supports Research & Teaching at FAU

A. Eberle donates LVRSys® low-voltage regulation system to Energy Campus Nuremberg at Friedrich-Alexander University Erlangen-Nürnberg.

Read more

Info letter

Info Letter No. 4: Summation of Alternating Currents

For the parallel connection of power sources, the principle of superposition applies, when all resources...

Read more

Special Publication

Economic Analysis Low Voltage Regulation

Smart Grids and the resulting changes in the distribution grids face many distribution grid operators with different challenges. These include...

Read more

Special Publication

Pilot Project on a Motorway Parking Lot

In 2018, the “Auergründel” PWC (car park with WC) on the A6 suffered repeat failures of its fresh and waste water pumps...

Read more

Contact request:



* Mandatory

Your data is being processed

a-eberle kontakt newsletter ×

Our seminars &
webinars

► Register here!

x