Power Quality Messungen:

Der N-Leiter & Harmonische Oberschwingungen

In Power Quality Messungen werden häufig ungeradzahlige harmonische Oberschwingungen wie die 15., 21. & 27. verletzt. Doch was sind Harmonische überhaupt, wie kommt dieser Umstand zustande und welchen Einfluss hat das auf den Neutralleiter. Dieser Beitrag beschäftigt sich mit diesen Fragen und soll Licht ins Dunkle führen.

Definition von Harmonischen

Durch die steigende Anzahl an nichtlinearen Verbrauchern entstehen vermehrt Netzrückwirkungen, die sich durch einen nichtsinusförmigen Strom charakterisieren lassen. Der TÜV SÜD definiert Harmonische wie folgt:

Oberschwingungen (Harmonische) sind ganzzahlige Vielfache der Netzfrequenz. Sie entstehen durch nichtlineare Lasten, wie Entladungslampen (z. B. Energiesparlampen), überlastete Transformatoren, Netzteile mit Spitzenwertgleichrichtern und durch den Einsatz von Stromrichterventilen, z. B. Gleichrichter, Frequenzumrichter, Steller, USV-Anlagen. Das Kennzeichen dieser Verbraucher und Betriebsmittel ist ein nichtsinusförmiger Strom bzw. ein periodisch ein- und ausgeschalteter Stromfluss. Generatoren, deren Wicklungstechnik die Entstehung von Oberschwingungsspannungen (Oberfelder) zulässt, verursachen bei entsprechender Anschaltung an das Netz ebenfalls Oberschwingungsströme. Diese nichtsinusförmigen Größen lassen sich durch geeignete mathematische Verfahren (Fourieranalyse) auf sinusförmige Größen zurückführen. Sie enthalten zur Grundschwingung (in Europa: 50 Hz) noch ganzzahlige Vielfache, die vorgenannten Oberschwingungen. An den Netzimpedanzen oder an der Generatorimpedanz verursachen diese Oberschwingungsströme Spannungsfälle. Diese Spannungsfälle (Oberschwingungsspannungen) überlagern sich der Grundschwingung (50 Hz) und verzerren die Sinusform der Netzspannung. Als Folge daraus kann der störungsfreie Betrieb anderer Verbraucher (z. B. Motoren, Generatoren, Kondensatoren) beeinträchtigt werden.

Diese Oberschwingungen können durch Power Quality Messungen nachgewiesen werden. Abbildung 1 zeigt eine typische Power Quality Messung bei einem Kunden, bei dem der oben beschriebene Fall eingetreten ist. Auf den ersten Blick kann man bereits erkennen, dass es sich ausschließlich um ungeradzahlige und durch drei teilbare Harmonische Oberschwingungen handelt.

harmonische-oberschwingungen
Abbildung 1: Grenzwertverletzung Report nach EN 50160

Auswirkungen von einphasigen Geräten

Heutzutage werden immer mehr einphasige Geräte verwendet, die über ein Schaltnetzteil angesteuert werden. Im Heim-Bereich sind dies beispielsweise Computer, Spielekonsolen und viele weitere Haushaltsgeräte. Diese Geräte haben heutzutage keinen Trafo mehr vorgeschaltet, sondern ein Schaltnetzteil. Im Eingang dieser Schaltnetzteile ist meist ein Brückengleichrichter eingebaut, der den Strom impulsförmig aufnimmt. Früher wurde der Strom sinusförmig von einem ohmschen Verbraucher aufgenommen. Eine Messung des Impulses zeigt Abbildung 2.

Abbildung 2: Eingangskreis mit B2-Brückengleichrichter

Zerlegt man diesen Strom in sein Spektrum, erkennt man, dass alle ungeradzahlige Harmonische vorhanden sind. Die durch drei teilbaren Harmonischen addieren sich auf dem N-Leiter. Dies kommt dadurch zustande, da die Phasen L2 und L3 im Drehstromsystem um 120° phasenverschoben sind. Die 120° Phasenverschiebung ist selbstverständlich auch die Zeitverschiebung, in der eine Sinusvollschwingung von 150 Hz durchgeführt wird wie in Abbildung 3 dargestellt wird. Man erkennt in der Abbildung, dass nach 120° eine Sinus-Vollschwingung durchlaufen ist und daraufhin die nächste Phase L2 beginnt. Geht man nun von der Annahme aus, dass im Netz auf allen drei Phasen ähnliche Verbraucher installiert sind, dann würden sicherlich auch die dritte Harmonische von der Phasenlage für die Phase L2 und L3 an ähnlicher Stelle liegen.

Abbildung 3: Sinusschwingungen Dreiphasen + 150 Hz

Wenn die Belastung auf den drei Phasen L1, L2 und L3 symmetrisch sind und mit 100 A belastet werden, dann ist der N-Leiter nicht belastet. Das stimmt allerdings nur für die Grundschwingung und für alle Harmonischen, die nicht durch 3 teilbar sind. Wenn man für eine fünfte Harmonische 10 A auf allen Phasen messen kann, dann könnte man auch auf dem N-Leiter nur 0 A sehen. Eine Besonderheit bringt die dritte Harmonische mit sich, da die Ausgangslage genau die 120° sind, müssen alle Abtastwerte der Phasen L1, L2, L3 und N-Leiter in Summe 0 ergeben. Sollten sie von der Phasenlage nun genau überlappend sein, bedeutet dies für das Netz, dass auf dem N-Leiter der dreifache Strom fließen muss. Dieser Umstand gilt ebenso für die doppelte und dreifache Frequenz, wie die sechste oder neunte Harmonische. Allerdings ist es so, dass bei Untersuchungen im Netz überwiegend ungeradzahlige Harmonische gefunden werden und geradzahlige Harmonische in der Regel kaum vorkommen

Auswirkungen von Stromoberschwingungen für das elektrische Netz

Abschließend lässt sich festhalten, dass Stromoberschwingungen mit einer durch drei teilbaren Ordnungszahl sich bei symmetrischer Belastung im Neutralleiter zu einer dreifachen Größe überlappen. Die stellt für das Netz insofern ein Problem dar, da für die durch 3 teilbaren Harmonischen die Impedanz des Netzes vier Mal so groß ist wie für die fünfte Harmonische oder die Grundschwingung. Bei Symmetrie fließt von der fünften Harmonischen auf dem N-Leiter kein Strom, von der dritten Harmonischen können allerdings die dreifachen Ströme gemessen werden, die zum Transformator zurückfließen. Daher ist es bei den durch 3 teilbaren Harmonischen immer ganz entscheidend, an welcher Stelle im Netz diese Harmonische im Netz bewertet werden. Für den Fall, dass relativ nahe am Transformator gemessen wird, so ist in der Regel eine durch drei teilbare Harmonische hier sehr unauffällig. Je weiter man sich allerdings vom Transformator Richtung Verbraucher entfernt, nehmen die durch drei teilbaren Harmonischen auf der Spannung schnell zu: Viel schneller als es eine fünfte oder siebte Harmonische tun würde.

Der Trend hin zu Netzen mit höher belasteten Harmonischen lässt sich aufgrund der Vielzahl an einphasigen Geräten nicht verhindern. All diese Geräte erhöhen den Pegel der durch drei teilbaren Harmonischen wie die 3., 15. oder die 21. Harmonischen. Mittlerweile haben die Normen reagiert und die Verträglichkeitspegel, die für das öffentliche Netz erlaubt sind, erhöht. So wurde der Verträglichkeitspegel in der aktuellen EN 50160 für die 15. Harmonische beispielsweise von 0,5 % auf 1,0 % erhöht.

Sollten heutzutage Power Quality Bewertungen durchgeführt werden, sollten die hinterlegten Grenzwerte in den Power Quality Messgeräten auf aktuell gültige Grenzwerte korrekt eingestellt werden.

Autor
Jürgen Blum, Produktmanager Power Quality Mobil

Sie haben Fragen zu unseren PQ-Boxen?

Kontaktieren Sie uns!


Jetzt Kontaktaufnehmen

Das könnte Sie auch interessieren

Messbericht: Ausfall von Produktionsmaschinen bzw. Auslösung eines Leistungsschalters infolge von Spannungseinbrüchen

In einem Industrienetz kommt es durch das Auslösen von Leistungsschaltern gelegentlich zu Ausfällen von großen Produktionsmaschinen. Der Betreiber des Industrienetzes möchte durch eine Messung mit einem unserer Power Quality Netzanalysatoren die Ursache des Auslösens der Leistungsschalter ermitteln.

Mehr erfahren

Spannungsqualität messen: Die 3. Harmonische in der Praxis

Dieser Applikationsbericht soll anhand einer typischen Messung im Netz veranschaulichen und aufzeigen, was bei Power Quality Messungen zu beachten ist.

Mehr erfahren

Wandel in der Energietechnik – Teil 2

In diesem Beitrag, der gemeinsam mit dem Portal Schutztechnik.com entstanden ist, wird der aktuelle Wandel in der Energietechnik diskutiert.

Mehr erfahren

Wandel in der Energietechnik – Teil 1

In diesem Beitrag, der gemeinsam mit dem Portal Schutztechnik.com entstanden ist, wird der aktuelle Wandel in der Energietechnik diskutiert.

Mehr erfahren

Kontaktanfrage:



Ihre Daten werden verarbeitet

a-eberle kontakt newsletter ×