+++ ONLY UNTIL DECEMBER 31st: PQ-Box Trade-In Promotion +++ Only a few days left to save on your PQ-Box order +++ Click here for all further information! +++

+++ ONLY UNTIL DECEMBER 31st: PQ-Box Trade-In Promotion +++ Only a few days left to save on your PQ-Box order +++ Click here for all further information! +++

+++ ONLY UNTIL DECEMBER 31st: PQ-Box Trade-In Promotion +++ Only a few days left to save on your PQ-Box order +++ Click here for all further information! +++

Mains Feedback Interferes With Protective Devices

Residual Current Devices (RCD) Trip Because of Supraharmonics Caused by External Grid Consumers

In a photography and design studio, located in a large industrial park, a RCD tripped frequently. Due to the permanent power outtages, the employees of the studio could not work properly. This situation required a quick solution, but even electricians could not find the cause of the power outtages. To solve the problem, an in-depth network analysis is required.

To conduct the analysis, an electrical company tried to detect the fault in the photo studio, which is located on the first floor of a multi-level building. A common fault for tripping a RCD is a faulty contact point between a neutral conductor and earth or an insulation fault with a fault current conductor to earth behind the RCD.

Finding Solutions

First, the electricians conducted the following steps:

  1. Disconnecting all consumers and carrying out an insulation test of all lines behind the RCD.
  2. Carrying out a VDE 0701-0702 test of all connected devices in the photo studio.

The insulation measurement with 500 V DC was carried out from the protective conductor (PE) against th neutral conductor (N) and then protective conductor against all external conductors (L1, L2, L3). In all cases, the insulation resistance of all lines was > 1 MΩ and therefore, a fault could be eliminated at this point. The insulation test of all devices also showed no insulation faults, which meant that they could be ruled out as the cause of the RCD tripping.

As the insulation test did not point out the cause of the tripping, all circuit breakers in the distribution grid of the photo studio were switched off. These breakers were activated one after another to find the feeder, which triggered the RCD. For a first quick solution, the circuit breaker containing the faulty feeder could be left switched off so that at least all other consumers in the photo studio could continue to operate without faults. By executing this plan, the electricians realized that the RCD even trips when none of the circuit breakers are switched on. At this point the electricians were at their wit’s end. What else could cause the RCD to trip?

  • All consumers are disconnected from the mains via the circuit breakers.
  • All cables and all consumers have passed the insulation test and can be ruled out as the source of the fault.

Further Investigations Beyond the Energy Distribution

However, there is another company located in the building, which uses frequency inverter-controlled drives for the production and machining of metal parts. In order to find the reason for the false triggering of the residual current device, the following measurement set-up was installed and the cause of the tripping was searched using high-quality measurement technology.

As displayed in picture 1, the network analyzer PQ-Box 300 from A. Eberle is used to measure in the sub-distribution of the photo studio. The black current clamps are used for the conductors L1, L2, L3 and N record the currents via our RCD, while a fifth current clamp (red) additionally records the differential current. The differential current is the sum of the three phase currents and the neutral conductor and thus the current that is also evaluated by the RCD and the cause for the tripping.

At any time, the sum of the instantaneous values of the currents L1, L2, L3 and N should add up to the value of 0. The resulting differential current, recorded using the the fifth current clamp, thus corresponds to the current flowing the earth as fault current or leakage current. The voltages were connected to the output of the RCD via magnetic gripper, as shown in Fig. 1. This magnetic gripper are quite convenient and quick to fit in any installation, as the screws of circuit breakers are always ferromagnetic, and thus magnetic taps can be adapted very easily and in a few seconds.

In the settings of the measuring device, the trigger threshold for fast fault records has now been set to the voltage. As soon as the mains voltage drops to 0 V by switching off the RCD, the power analyser should start a fast recording of all samples at 400 kHz.

Usually, power analysers record a large post-history as a result of an event. In this case, however, the measuring device only receives its trigger pulse at the end of the disturbance and at this point, for the evaluation it is interesting to have a history as long as possible. High-quality power analysers keep oscilloscope images in a fast RAM for a long period, even if no set limit value is exceeded. Figure 2 shows one of these events.

mains-feedback-investigation
Figure 1: Connection of current clamps L1, L2, L3, N conductor (black mini current clamps), a differential current clamp (red) as well as the voltage measuring leads via magnetic taps (bottom, blue and red), connected to the power quality analyzer PQ-Box 300
mains-feedback-oscilloscope
Figure 2: Oscilloscope image of voltage L1, L2, L3 and currents L1, L2, L3, N-wire over 4000 ms recording duration with long prehistory and event at end
mains-feedback-network-analyzer
Figure 3: The PQ-Box 300 in action

Analysis of the Measurement Data and Explanation of the Problem

The frequency spectrum can be calculated from the sampled values shortly before the RCD is triggered using an FFT (Fast Fourier Transformation) analysis. In general, a measuring device can only calculate the spectrum up to a maximum of half the sampling rate. The PQ-Box 300 can calculate the spectrum to up to 170 kHz. The frequency analysis of the voltages and currents recorded during the fault show frequencies at 8 kHz, 16 kHz, 24 kHz and 32 kHz before the RCD tripped (Fig. 3). Using the gathered data, the search for the cause continued. These frequencies are not generated by any consumer in the photo studio and must therefore be introduced into the electrical grid from the outside. In addition, the RCD tripped even when all the circuit breakers were switched off.


Note: Most clamp ammeters as well as simple mains analysers’ usually only measure up to 2 kHz – thus the leakage currents that occurred here would not be measurable and would therefore often not be noticed.

mains-feedback-fft-analysis
Fig. 4: FFT analysis of the currents from DC to 20 kHz – mains repercussions are clearly visible at 8 kHz and at 16 kHz with nearly 700 mA

Cause Identified: Frequency Converter-Controlled Drive

The high frequencies of 8 kHz and their multiples can only be generated locally in the low-voltage network. It cannot be assumed that these high frequencies are transmitted via a transformer. Thus, the search was limited to this building, which is equipped with its own 400 kVA transformer. On the ground floor of the same building, a production plant with some inverter-controlled drives is located. From these plants, the high frequencies are emitted into the grid via the plant current.

Since the transformer (XL) of the building has a high impedance for high frequencies (see the commonly known formula 1), these introduced interfering signals of 8 kHz and their multiples usually seek other consumers nearby with a low impedance. These are mainly devices with built-in capacitors, such as switching power supplies. Formula 2 indicates this state (the imaginary components are left out for simplification):

X_{L} = ω* L\hspace{5mm} with \: \hspace{5mm}ω =  2 *π*f\\
X_{C} = \frac{1}{ω*C}\\\
\\
X_{L} = Inductive\ reactance\ (inductance,\ transformer)\\
X_{C} = Capacitive\ reactance\ (capacitance,\ capacitor)\\
ω = Circular\ frequency\\
L = Inductance\\
f =Frequency\\
C =Capacitance\\

The formulas 1 and 2 indicate that inductances for high frequencies have a high reactance and capacitors a very low reactance. The same applies to the impedance as a complex resistance. All consumers installed in the building significantly determine a disturbance level expansion of higher-frequency disturbances (also called supra harmonics).

Explanation of the Phenomenon

The inverter-controlled drives on the ground floor generated mains feedback in the frequency range of 8 kHz and multiples thereof. These levels will hardly flow in the direction of our 400 kVA transformer because it has a high impedance for high frequencies (see formula 1; Fig. 5). These clock frequencies seek out to other consumers in the vicinity, which have a low mains impedance for these frequencies. In this case, a current flows via the outer and neutral conductors towards the consumer.

mains-feedback-superharmonic-propagation
Figure 5: Scheme of superharmonic propagation in this building.

The mains filters in the various consumers of the photo studio generate leakage currents to earth. All consumers must have such EMC filters to obtain the CE mark. Since switched-mode power supplies themselves also produce conducted interference, these devices must be connected to filters. Most times, simple passive components such as current-compensated mains chokes and X/Y capacitors (Fig. 5) are used.

Figure 6: Example of X and Y capacitors in the input of a switched-mode power supply; in this case, the Y capacitors are critical.

As it is not clearly defined, which position the outer conductor and the neutral conductor take when connecting a single-phase consumers via a Schuko socket, filters are found on both conductors: outer conductor to earth and neutral conductor to earth. The resulting leakage currents are predominantly capacitive, while fault currents have a high ohmic component.

An RCD cannot distinguish between a residual current and a leakage current. It must trip as soon as its current threshold is exceeded. For a 30 mA RCD, this tripping threshold is set between a minimum of 15 mA and a maximum of 30 mA. An RCD must trip between 0.5 x In to 1 x In, that is its task.

Due to the large number of consumer devices in the photo studio, such as lighting equipment, cameras, monitors, PCs and servers, the total tripping current of the RCD exceeds at 15 mA or 30 mA. To protect human beings, the tripping value is limited to 30 mA and this value should not be exceeded. This means that in our case a 300 mA type should not replace it.

The RCD now recognises a residual current due to the sum of the leakage currents of all loads. This flows via the active conductors to earth or, if all circuit breakers are switched off, between the neutral conductor and earth and thus triggers the RCD. This effect is not noticeable in an insulation measurement, as this is carried out with a DC voltage.

Problem Solving

There are several solutions to this problem:

  • Installation of a mains filter directly in front of the sub-distribution of the photo studio on the 1st floor
  • Installation of a mains filter at the source of the mains feedback on the ground floor
  • Replace the RCD with a suitable type for these mains conditions

There are many different types of RCDs for different applications nowadays, e.g. AC, A, B, B+, F. A solution for our mains feedback problem would the replacement of the RCD in the distribution grid e.g. with a Doepke type B SK. With this type of RCD, the tripping current for higher frequencies is above 30 mA for 50 Hz. High frequencies are not as dangerous for humans as 50/60 Hz currents and thus a higher tripping value may be used here (see e.g. [1]).

Since we also wanted to avoid interference from other units in the building, we additionally decided to install a mains filter in the supply line of the company causing the interference on the ground floor. This eliminates the high clock frequencies directly at the point of origin.

Conclusion

Higher leakage currents could be expected in industrial plants with power electronics. These currents can cause residual current circuit breakers to trip unnecessarily. However, the causes of tripping RCDs provoked by companies, which are not part of the local electrical distribution, are difficult to detect.

Due to the changes in energy technology, we are increasingly discovering mains feedback in the higher-frequency range of 2 kHz to 150 kHz in our energy supply grids, caused by converter-controlled drives or switching power supplies. These higher-frequency repercussions also cause new disturbances that were previously unknown. Voltage quality standards such as the IEC or DIN EN 61000-2-2 [2] already include limit values for the public low-voltage grid of up to 150 kHz. In order to detect disturbances in these frequency ranges, it is important to check before the measurement whether the used measuring device or current clamp can detect faults in this frequency range at all. Every measuring device and every current clamp has a limited frequency range that must be checked before conducting a power quality measurement.

Literature

[1]
Allstromsensitive Fehlerstromschutzeinrichtungen (RCD Typ B)
Anwendungshinweise und technische Informationen (Handbuch Allstromfibel). Doepke Schaltgeräte: Oktober 2019.
Erhältlich unter: www.doepke.de/de/produkte/schuetzen/fehlerstromschutzschalter-rccb/

[2]
DIN EN 61000-2-2 (VDE 0839-2-2):2020-05 Elektromagnetische Verträglichkeit (EMV)
Teil 2-2: Umgebungsbedingungen – Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen und Signalübertragung in öffentlichen Niederspannungsnetzen.

Author
Jürgen Blum, Product Manager Power Quality Mobile

Want More Information About Our Products?

Contact Us Here!


Contact

News From the Product Group

PQMobil - News

General Knowledge

Harmonics

Harmonics are waves whose frequencies are an integer multiple higher or lower than those of the fundamental oscillations. They arise due to non-linear loads in the grid when the electrical voltage is distorted due to various influencing factors. Learn more about harmonics in this article!

Read more

Training Video

»PQMobil« Training Video 6: Presentation of WinPQ mobile 7.1

In this video we introduce you to all the new features & functions of the latest version of the analysis software »WinPQ mobil 7.1« for our portable power quality analysers. Enjoy the video and the new possibilities with your PQ-Box from A. Eberle.

Read more

Blogpost

International Partner Week 2024 – a Look Back

Our International Partner Week 2024 - many old friends and new faces were our guests, it was a pleasure.

Read more

Training Video

»PQMobil« Training Video 5: Trigger and Fault Record Settings

Discover the best trigger settings for your »PQ-Box« to accurately record network disturbances. The video shows how to configure the half-cycle, oscilloscope, and transient recorders to reliably capture essential measurement data.

Read more

Blogpost

PQ-Box Trade-in Promotion: Only From 1 September to 31 December 2024

For a limited time: Receive a discount for the trade-in of your PQ-Box 100 or a comparable external old device (3-phase power quality analyser). Click here for further information!

Read more

General Knowledge

Voltage Monitoring

Find out everything you need to know about voltage monitoring in this article. What is voltage monitoring, why is voltage monitoring essential for both energy supply companies and industrial companies and how is it implemented in compliance with standards?

Read more

General Knowledge

What Is Load Profile Measurement/Power Measurement?

This article explains the definition and difference between load profile measurement (RLM), power measurement and measuring the standard load profile. These are important methods for accurately recording energy consumption in commercial, large industrial plant as well as in the public energy grid.

Read more

Training Video

»PQMobil« Training Video 4: Create and Configure PQ Reports With Software WinPQ Mobil

This video explains everything about creating and configuring power quality reports with »WinPQ mobil«.

Read more

Webinar

»PQMobil« Webinar: Grid Analysis in Public & Industrial Power Grids With A. Eberle PQ-Boxes

Webinar recording from 2024-02-22: »PQMobil - Grid Analysis in Public & Industrial Power Grids with A. Eberle PQ-Boxes«.

Read more

Training Video

»PQMobil« Training Video 3: Usability & Functions of the PQ-Box App

This video gives you an introduction to the usability and functions of the »PQ-Box App« for our portable power quality analysers.

Read more

Training Video

»PQMobil« Training Video 2: Menu Navigation and Operation of the PQ-Box

In this short introductory video, we present to you how to navigate and operate our portable power quality analysers »PQ-Box 150«, »PQ-Box 200« & »PQ-Box 300« of the PQ-Box family.

Read more

Training Video

»PQMobil« Training Video 1: Getting Started With the PQ-Box

This video shows in detail how to connect the »PQ-Box« and record measurements. The »WinPQ mobil« software is then used to visualize and analyse the measurement data and create a report.

Read more

Special Publication

Ferrari´s Meter vs. Electronic Meter

This technical report analyzes a power measurement at a large industrial customer. The customer records very high currents and fifth harmonic voltages during production time, which leads to poor voltage quality.

Read more

General Knowledge

Residual current

In this article, you will learn about residual current measurement & residual current monitoring and why it is important to measure residual current.

Read more

General Knowledge

Power Quality

Good power quality is characterized by the fact that the mains voltage actually arriving at the consumer matches the mains voltage promised by the utility company.

Read more

General Knowledge

Reactive power – definition, calculation and measurement

The key role of reactive power in electrical engineering: definition, calculation, measurement and the differences to active power and apparent power. Find out how reactive power influences the efficiency of electricity grids and shapes energy transmission.

Read more

General Knowledge

What is apparent power and how is it calculated?

This article addresses the question of what apparent power is and how to calculate it. An understanding of apparent power is crucial for the correct dimensioning of inverters and therefore for the optimum efficiency and performance of photovoltaic systems.

Read more

Special Publication

Angle Determination of Voltage and Current Harmonics in Practice

Today's devices and equipment such as switched-mode power supplies, frequency converters, regulated drives, charging devices for e-mobiles or LED lighting work internally with high clock frequencies in order to regulate power efficiently. These can lead to both conducted and field-bound (coupled) influences in the energy grid. In this technical report, we explain how you can detect these sources of interference in the grid using suitable measuring technology.

Read more

General Knowledge

All „Supra“ With Your Grid?

Today's devices and equipment such as switched-mode power supplies, frequency converters, controlled drives, charging devices for e-mobiles or LED lighting work internally with high clock frequencies in order to regulate power efficiently. These can lead to line-borne as well as field-borne (coupled) interference in the power grid. In this technical report, we explain how you can detect these sources of interference in the grid using suitable measurement technology.

Read more

General Knowledge

Power Quality Analysis: Tips and Tricks II

Useful tips & tricks for handling Power Quality measuring devices and typical user errors - now in our two-part article! This article provides further insights and practical tips and application examples for power quality analysis.

Read more

General Knowledge

Power Quality Analysis: Tips and Tricks I

Useful tips & tricks for handling Power Quality measuring devices and typical user errors - now in our two-part article! This article explains tips and tricks for performing power quality measurements. It explains which connection errors can be made and which preliminary considerations should be made before using a measuring device.

Read more

General Knowledge

Four Ways to Measure Current

The following technical report examines various methods for measuring current. It discusses how currents are measured using power analyzers and current clamps. The respective advantages and disadvantages of different technologies such as shunts, normal current clamps, hall effect sensors, etc. ar also evaluated.

Read more

General Knowledge

Cos ϕ vs. Power Factor λ – Practice

This second technical report on the subject of reactive power and in particular the distortion reactive power supplements the first contribution "Cos ϕ vs. power factor λ – Theory". In this article, the voltage and current of an incandescent lamp are measured in an online measurement using a power analyzer.

Read more

General Knowledge

Cos ϕ vs. Power Factor λ – Theory

This technical report discusses the distinction between power factor and cosine phi. Cosine Phi, formerly widely known as the ratio of active power to apparent power, however, has a different meaning for many consumers today.

Read more

Special Publication

Creating Power Quality Surveys With PQ-Box and WinPQ Mobil Software

The following report displays the PQ-Box and WinPQ mobil software interact to allow an evaluation of the disturbance levels at a measuring point according to approved grid norms.

Read more

Contact request:



* Mandatory

Your data is being processed

a-eberle kontakt newsletter ×

Our seminars &
webinars

► Register here!

x