# Zero sequence voltage in three-phase networks

Info Letter No. 5

### Zero sequence voltage in three-phase networks

With balanced network operation and inequality of the impedances in the consumer circuit, the phase voltages of the two circuits, and thus the neutral points are no longer congruent.

Between the neutral points, there is a voltage difference, which is referred to as the zero sequence voltage and the amount depends on the inequality of the impedances in the consumer circuit.

#### Three-phase three-wire network

The geometric sum of the complex effective values of the phase currents (see Figure 2) is zero and thus:

\frac{\underline{U}_{1N}+{\underline{U}_{NN''}}}{{\underline{Z}''_{1}}}+\frac{\underline{U}_{2N}+{\underline{U}_{NN''}}}{{\underline{Z}''_{2}}}+\frac{\underline{U}_{3N}+{\underline{U}_{NN''}}}{{\underline{Z}''_{3}}}=0

As a result:

\underline{U}_{NN''} = \frac{1}{3}[(\underline{U}_{1N''}+\underline{U}_{2N''}+\underline{U}_{3N''})-(\underline{U}_{1N}+\underline{U}_{2N}+\underline{U}_{3N})]

With symmetrical network operation U1N + U2N + U3N = 0 and thus the voltage UNN“ equal to the zero component U0, which is therefore also called the zero sequence voltage.

\underline{U}_{NN''}=\frac{1}{3}(\underline{U}_{1N''}+\underline{U}_{2N''}+\underline{U}_{3N''})

Then also:

\underline{U}_{NN''}=-\frac{1}{3}[\underline{I}_{1}(\underline{Z}^{''}_{2}-\underline{Z}^{''}_{1})+\underline{I}_{3}(\underline{Z}^{''}_{2}-\underline{Z}^{''}_{3})]

#### The influence

The effect on the zero sequence voltage of unequal impedances in the consumer circuit (which in turn cause asymmetric currents) is directly recognizable from this equation.

Contact

## News from the product group

### Power Quality – News

General Knowledge

#### Voltage Monitoring

Find out everything you need to know about voltage monitoring in this article. What is voltage monitoring, why is voltage monitoring essential for both energy supply companies and industrial companies and how is it implemented in compliance with standards?

General Knowledge

#### What Is Load Profile Measurement/Power Measurement?

This article explains the definition and difference between load profile measurement (RLM), power measurement and measuring the standard load profile. These are important methods for accurately recording energy consumption in commercial, large industrial plant as well as in the public energy grid.

Training Video

#### »PQMobil« Training Video 4: Create and Configure PQ Reports With Software WinPQ mobil

This video explains everything about creating and configuring power quality reports with »WinPQ mobil«.

Training Video

#### »PQMobil« Training Video 3: Usability & Functions of the PQ-Box App

This video gives you an introduction to the usability and functions of the »PQ-Box App« for our portable power quality analysers.

Training Video

#### »PQMobil« Training Video 2: Menu Navigation and Operation of the PQ-Box

In this short introductory video, we present to you how to navigate and operate our portable power quality analysers »PQ-Box 150«, »PQ-Box 200« & »PQ-Box 300« of the PQ-Box family.

Training Video

#### »PQMobil« Training Video 1: Getting Started with the PQ-Box

This video shows in detail how to connect the »PQ-Box« and record measurements. The »WinPQ mobil« software is then used to visualize and analyse the measurement data and create a report.

General Knowledge

#### Residual current

In this article, you will learn about residual current measurement & residual current monitoring and why it is important to measure residual current.

General Knowledge

#### Power Quality

Good power quality is characterized by the fact that the mains voltage actually arriving at the consumer matches the mains voltage promised by the utility company.

General Knowledge

#### Reactive power – definition, calculation and measurement

The key role of reactive power in electrical engineering: definition, calculation, measurement and the differences to active power and apparent power. Find out how reactive power influences the efficiency of electricity grids and shapes energy transmission.

General Knowledge

#### What is apparent power and how is it calculated?

This article addresses the question of what apparent power is and how to calculate it. An understanding of apparent power is crucial for the correct dimensioning of inverters and therefore for the optimum efficiency and performance of photovoltaic systems.

General Knowledge

#### Ready for the smart grid of the future?

All information about smart grids/intelligent power grids, the technology behind them, advantages, disadvantages, challenges and current distribution.

Info letter

#### Information Letter No. 24: Integration guide for the metering of a power plant according to the Requirements for Generators (2016/631) RfG

Integration guide for the measurement of a power plant (EZA) according to VDE-AR 4110 and VDE-AR 4120.

Info letter

#### Info Letter No. 23: Direction of harmonics Sources of harmonics in the power system

Le sens du flux de puissance des harmoniques est déterminé par le signe de la puissance activ

Info letter

#### Info Letter No. 22: Definition of power measurements according to the standards DIN 40110-2 and IEEE 1459

There is a wide range of electronic measuring devices for the digital measurement of power...

Info letter

#### Info Letter No. 20: Capacitance of conductors

In the conductors of electrical power supplies, a distinction is made between the operating capacitance...

Info letter

#### Info Letter No. 19: The evaluation of power quality and detection of interference in medium voltage network

For various reasons, interest in the continuous monitoring of network quality in medium-voltage...

Info letter

#### Info Letter No. 8: Apparent power and reactive power in three-phase networks

The range of electromechanical and electronic measuring devices in analog - and digital technology...

Info letter

#### Info Letter No. 4: Summation of Alternating Currents

For the parallel connection of power sources, the principle of superposition applies, when all resources...

Info letter

#### Info Letter No. 2: Measurement Transformers in three-phase networks (Part 2)

In a symmetrically loaded three-wire three-phase network, a two-pole insulated voltage transformer...

Info letter

#### Info Letter No. 1: Measurement Transformers in three-phase networks (Part 1)

The direct connection of measuring devices into the network is limited for safety reasons to values...

Webinar

#### »PQSys« Webinar: PQ-Monitoring & Feeder Current Measurement in Low-Voltage Grids

Webinar recording from 2024-04-17: »PQSys - PQ-Monitoring & Feeder Current Measurement in Low-Voltage Grids«.

Webinar

#### »PQMobil« Webinar: Grid Analysis in Public & Industrial Power Grids with A. Eberle PQ-Boxes

Webinar recording from 2024-02-22: »PQMobil - Grid Analysis in Public & Industrial Power Grids with A. Eberle PQ-Boxes«.

Special Publication

#### Ferrari´s Meter vs. Electronic Meter

This technical report analyzes a power measurement at a large industrial customer. The customer records very high currents and fifth harmonic voltages during production time, which leads to poor voltage quality.

Special Publication

#### Angle determination of voltage and current harmonics in practice

Today's devices and equipment such as switched-mode power supplies, frequency converters, regulated drives, charging devices for e-mobiles or LED lighting work internally with high clock frequencies in order to regulate power efficiently. These can lead to both conducted and field-bound (coupled) influences in the energy grid. In this technical report, we explain how you can detect these sources of interference in the grid using suitable measuring technology.

General Knowledge

#### All „Supra“ with your grid?

Today's devices and equipment such as switched-mode power supplies, frequency converters, controlled drives, charging devices for e-mobiles or LED lighting work internally with high clock frequencies in order to regulate power efficiently. These can lead to line-borne as well as field-borne (coupled) interference in the power grid. In this technical report, we explain how you can detect these sources of interference in the grid using suitable measurement technology.